AbsCN-seq: a statistical method to estimate tumor purity, ploidy and absolute copy numbers from next-generation sequencing data

نویسندگان

  • Lei Bao
  • Minya Pu
  • Karen Messer
چکیده

MOTIVATION Detection and quantification of the absolute DNA copy number alterations in tumor cells is challenging because the DNA specimen is extracted from a mixture of tumor and normal stromal cells. Estimates of tumor purity and ploidy are necessary to correctly infer copy number, and ploidy may itself be a prognostic factor in cancer progression. As deep sequencing of the exome or genome has become routine for characterization of tumor samples, in this work, we aim to develop a simple and robust algorithm to infer purity, ploidy and absolute copy numbers in whole numbers for tumor cells from sequencing data. RESULTS A simulation study shows that estimates have reasonable accuracy, and that the algorithm is robust against the presence of segmentation errors and subclonal populations. We validated our algorithm against a panel of cell lines with experimentally determined ploidy. We also compared our algorithm with the well-established single-nucleotide polymorphism array-based method called ABSOLUTE on three sets of tumors of different types. Our method had good performance on these four benchmark datasets for both purity and ploidy estimates, and may offer a simple solution to copy number alteration quantification for cancer sequencing projects. AVAILABILITY AND IMPLEMENTATION The R package absCNseq is available from http://biostats.mcc.ucsd.edu/files/absCNseq_1.0.tar.gz CONTACT: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BubbleTree: an intuitive visualization to elucidate tumoral aneuploidy and clonality using next generation sequencing data.

Tumors are characterized by properties of genetic instability, heterogeneity, and significant oligoclonality. Elucidating this intratumoral heterogeneity is challenging but important. In this study, we propose a framework, BubbleTree, to characterize the tumor clonality using next generation sequencing (NGS) data. BubbleTree simultaneously elucidates the complexity of a tumor biopsy, estimating...

متن کامل

Accurity: Accurate tumor purity and ploidy inference from tumor-normal WGS data by jointly modelling somatic copy number alterations and heterozygous germline single-nucleotide-variants.

Motivation Tumor purity and ploidy have a substantial impact on next-gen sequence analyses of tumor samples and may alter the biological and clinical interpretation of results. Despite the existence of several computational methods that are dedicated to estimate tumor purity and/or ploidy from The Cancer Genome Atlas (TCGA) tumor-normal whole-genome-sequencing (WGS) data, an accurate, fast, and...

متن کامل

Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity

MOTIVATION Next-generation sequencing (NGS) has revolutionized the study of cancer genomes. However, the reads obtained from NGS of tumor samples often consist of a mixture of normal and tumor cells, which themselves can be of multiple clonal types. A prominent problem in the analysis of cancer genome sequencing data is deconvolving the mixture to identify the reads associated with tumor cells ...

متن کامل

FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing

Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in c...

متن کامل

BACOM2.0 facilitates absolute normalization and quantification of somatic copy number alterations in heterogeneous tumor

Most published copy number datasets on solid tumors were obtained from specimens comprised of mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. The inability to correct for signal mixing represents a major limitation on the use of these datasets for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 30 8  شماره 

صفحات  -

تاریخ انتشار 2014